Limit theorems for Poisson branching processes
نویسندگان
چکیده
منابع مشابه
Limit Theorems for Supercritical Markov Branching Processes with Non-homogeneous Poisson Immigration
This paper deals with Markov branching processes allowing immigration at random time points described by a non-homogeneous Poisson process. This class of processes generalizes a classical model proposed by Sevastyanov, which included a time-homogeneous Poisson immigration. The proposed model finds applications in cell kinetics studies. Limit theorems are obtained in the supercritical case. Some...
متن کاملLimit Theorems for Some Branching Measure-valued Processes
We consider a particle system in continuous time, discrete population, with spatial motion and nonlocal branching. The offspring’s weights and their number may depend on the mother’s weight. Our setting captures, for instance, the processes indexed by a Galton-Watson tree. Using a size-biased auxiliary process for the empirical measure, we determine this asymptotic behaviour. We also obtain a l...
متن کاملLimit Theorems for Continuous State Branching Processes with Immigration
when nx and n2 are measures on the Borel sets of (0, oo) with the property that r u r u -n^du) + n2(du) <oo; a ^ 0, y ̂ 0, c ^ 0,d ^ 0. J0+ 1 + w J0 + 1 + u Furthermore any set of parameters (a, /?, y, c, d, nl5n2) define a unique ^MS 1970 swfy'ert classifications. Primary 60J80, 60F05; Secondary 60K30.
متن کاملCentral Limit Theorems for Poisson Hyperplane
We derive a central limit theorem for the number of vertices of convex polytopes induced by stationary Poisson hyperplane processes in Rd . This result generalizes an earlier one proved by Paroux [Adv. in Appl. Probab. 30 (1998) 640–656] for intersection points of motion-invariant Poisson line processes in R2. Our proof is based on Hoeffding’s decomposition of U -statistics which seems to be mo...
متن کاملCentral limit theorems for double Poisson integrals
Motivated by second order asymptotic results, we characterize the convergence in law of double integrals, with respect to Poisson random measures, toward a standard Gaussian distribution. Our conditions are expressed in terms of contractions of the kernels. To prove our main results, we use the theory of stable convergence of generalized stochastic integrals developed by Peccati and Taqqu. One ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1975
ISSN: 0386-2194
DOI: 10.3792/pja/1195518511